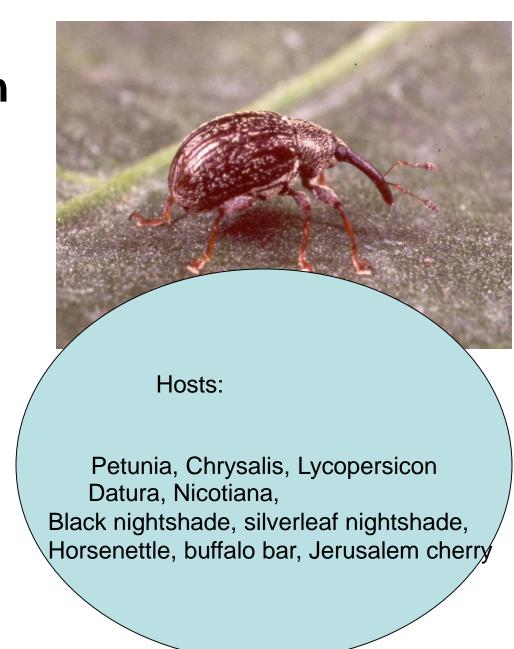
Integrated approach for Managing pepper weevil, *Anthonomus eugenii* Cano using reduced risk insecticides in combination with sex pheromone

D.R. Seal University of Florida-IFAS Tropical Research and Education Center Homestead, FL 33031

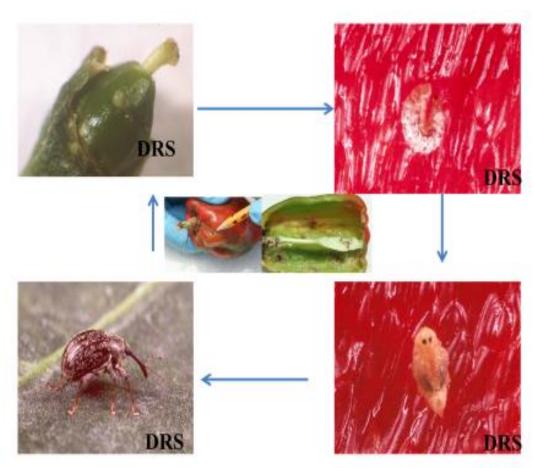

Pepper Production Acreage in the Southern Region

	Sweet pepper	Hot pepper
Florida	19, 554	1,049
Texas	4,919	6,464
N. Carolina	3,943	272
Georgia	3,745	
Virginia	1,134	
Kentucky	666	
Oklahoma	-	427
Louisiana	-	240

Origin: Mexico-Moved through south & Central America. Spread in Caribbean. **Texas: 1904;** California: 1923; Florida: 1935; Hawaii: 1933; Puerto Rico: 1982.

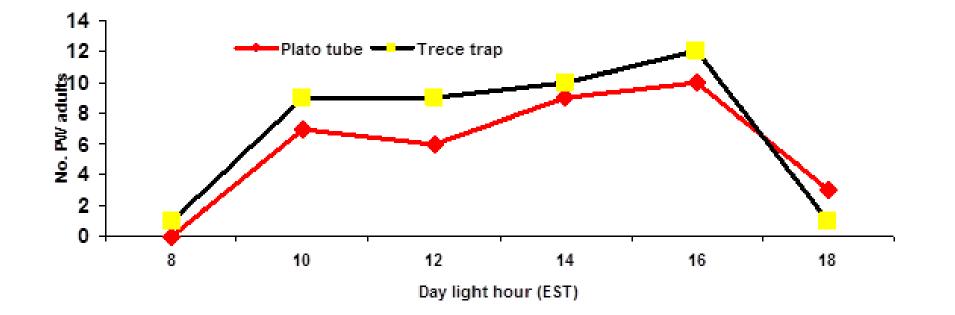
Adult: L 2.0-3.5 mm W 1.5-1.8 mm

Eggs: oval, grayish L: 0.53 mm W: 0.39 mm


Larva: Elongated, C-shaped

1st instar: 1.0 mm (0.8-1.5) 1.7 d

2nd instar: 1.9 mm (1.3-2.6) 2.2 d


3rd instar: 3.3 mm (2.2-5.0) 8.4 d

Pupa: 2.8 mm 4.7 d

Life cycle biology of PW

Diel activity pattern of pepper weevil

Alternate hosts

Petunia

Nicotiana

Buffalo bar

Chrysalis

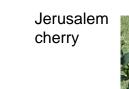
Lycopersicon

Black nightshade

Silver

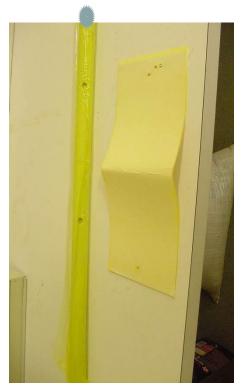
nightshade

Eggplant



Datura

Horse nettle



MANAGEMENT OF PW

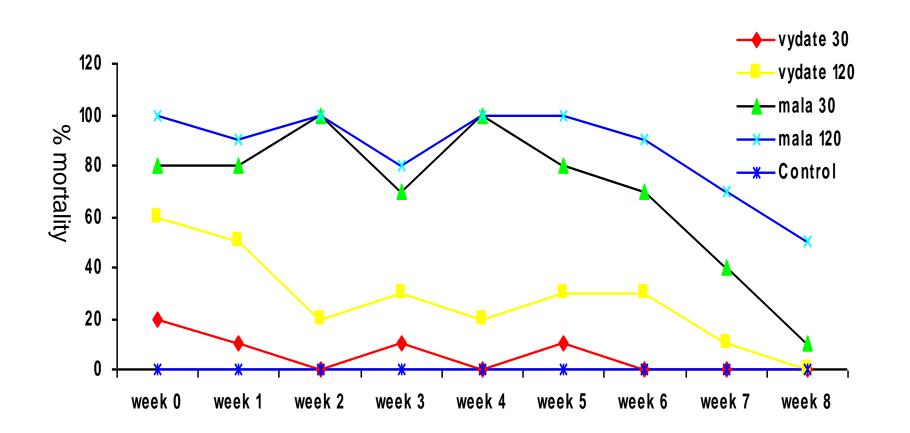
- Pheromone based management program
- Reduced risk insecticide
- Reflective plastic mulch

PEPPER WEEVIL MANAGEMENT BY USING PHEROMONE

Pheromone based pepper weevil management program

Plato's PWACT

Trece's pheromone


Materials and Methods Bioassay

- PWACTs were impregnated with Vydate and Malathion
- 8 tubes impregnated with Vydate were placed out side in a normal environmental condition
- Similarly, eight tubes were placed for Malathion and control.
- Each week for eight weeks, one tube for each treatment was brought into the laboratory and exposed to freshly emerged 3 PW adults for 30 secs. in 5 replicates.
- Treated adults were then transferred to a Petri dish and checked every day to record mortality.
- The above study was repeated by exposing PW adults for120 sec.

Treatments	Time of
	exposure
	(Sec)
Vydate	30 120
Malathion	30 120
Control	30 120

Mean percent mortality of PW adults in different treatments

Field Evaluation of PWACT

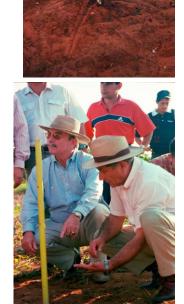
Treatment	Rate/A
PWACT	8 tubes
Actara	4 oz
Vydate	2 pt
Control	

Plot size: 50 ft long x 4 beds

RCBD

Six applications at weekly intervals

Evaluation was based on mean numbers of infested fruits


Field evaluation of PWACT

Field evaluation Mean numbers of infested fruits per 20 plants

Mean numbers of infested fruits

Treatment	Rate/A	10 May	17 May	24 May	31 May	8 June	15 June
PWACT	8 tubes	0.25a	0	4.25b	15.25a	56.50a	105.50a
Actara	4 oz	0	0	0.25c	0.25b	0.75b	2.00b
Vydate	2 pt	0	0.25a	1.00c	1.25b	0.75b	2.50b
Control		0.25a	1.50a	10.75a	18.75a	56.00a	129.25a

Means within a column followed by a same letter do not differ significantly (P >0.05; DMRT).

REDUCED RISK INSECTICIDE IN MANAGING PEPPER WEEVIL

Effectiveness of reduced risk insecticides in combination with Trece's Pheromone traps

Treatments	Rate/acre	Active component A	pplication intervals
Untreated			
Asana	6 oz		
Xpectro OD	1 qt	Pyrethrin+ B. bassi	ana Weekly
Spear	4 lbs	Spider venom	Weekly
Venerate XC	3 qts	Heat killied <i>Burkho.</i> <i>rinojensi</i> s	lderia weekly

2 One acre field

Five treatments

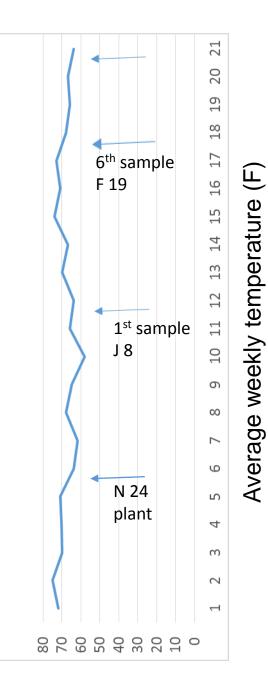
Four beds each 80 ft long RCBD

Five replications

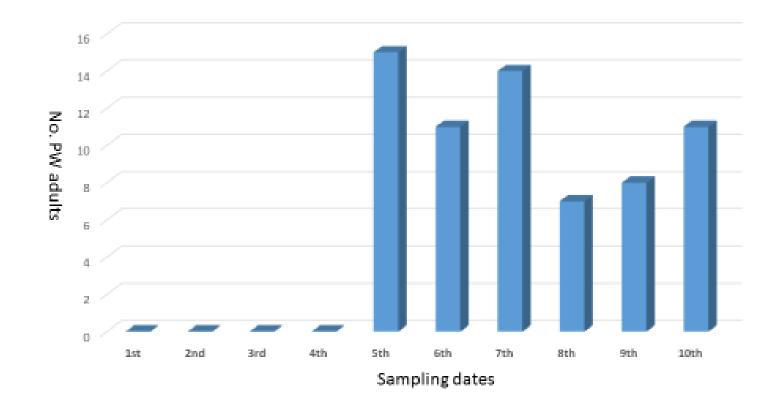
One pheromone trap/acre

Application: once a week for eight weeks

Evaluation: Collected all PW infested fruits


PW infested fruits in different treated plots

In presence of pheromone trap

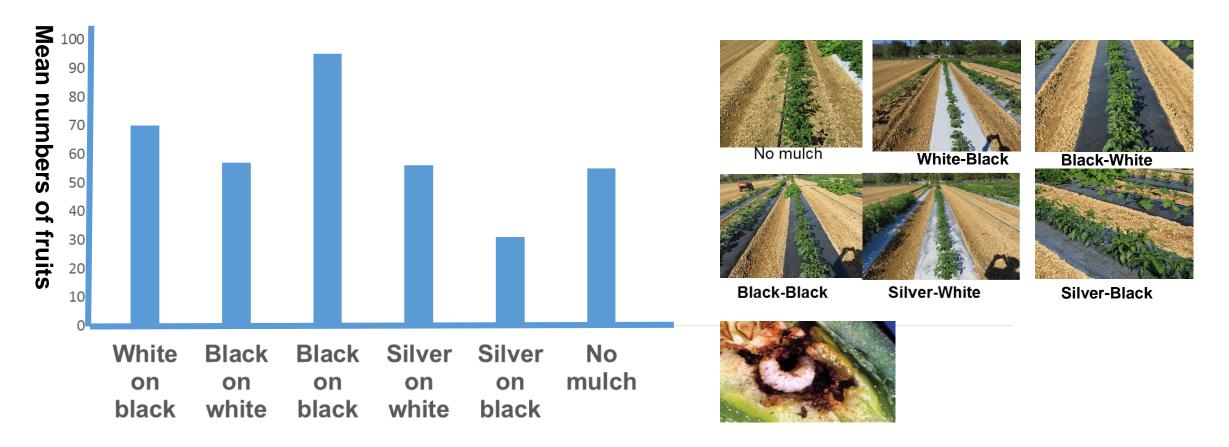

	J 8	J 16	J 22	J 31	F 9	F 19	F 25	M 4	M 14
Asana	0	0	0.60	0.75	2.00a	25.6ab	58.0b	47.4b	68.4b
Xpectro	0	0	0.20	0.50	0.60a	12.8b	33.8c	43.0b	116.6ab
Spear	0	0	0.20	0.82	2.00a	35.2a	108.4a	122.4a	162.4ab
Venerate	0	0	0.20	1.28	1.80a	36.8a	106.6a	119.8a	174.4ab
Control	0	0	0.20	1.30	2.20a	34.0a	105.4a	115.6a	189.4a

In absence of pheromone trap

	J 8	J 16	J 22	J 31	F 9	F 19	F 25	M 4	M 14
Asana	0	0	0	0.3	0	1.75a	10.5b	18.5b	66.25b
Xpectro	0	0	0	0.3	0	2.50a	33.0a	50.0a	147.0a
Spear	0	0	0	0.3	0	1.75a	24.8ab	17.0b	110.7a
Venerate	0	0	0	0.0	0	2.50a	20.3ab	40.8a	100.5a
Control	0	0	0	0.3	0.3	1.75a	18.3ab	33.3a	98.25ab

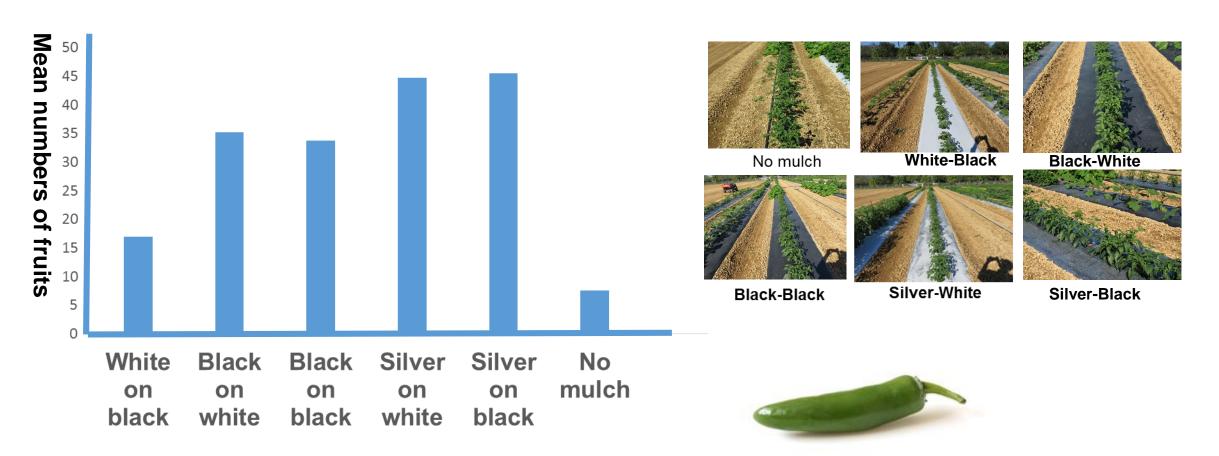
PW adults recorded on the Trece Pherocon PEW trap on various sampling dates during the study

Mean weight (lb) of marketable yield /acre


Marketable Yield (lb)

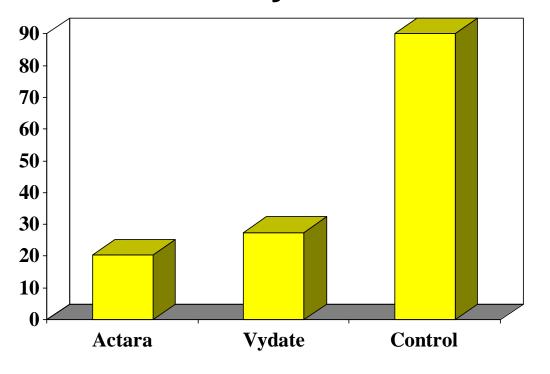
Treatments	Rate/acre	With Pheromone	Without pheromone
Asana	6 oz	2,904a	7,783ab
Xpectro	1 qt	1,888a	9,453ab
Spear	4 lbs	3,485a	9,707ab
Venerate	3 qts	2,701a	11,522a
Control	-	3,136a	5,699b

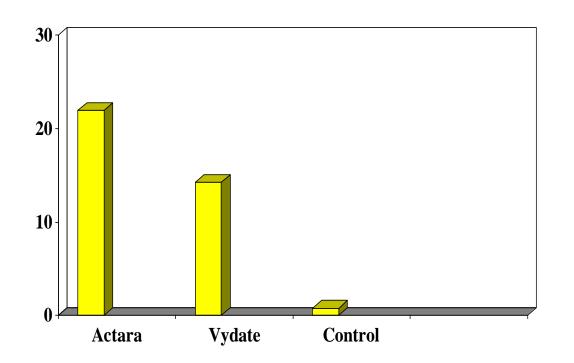
Means within a column followed by a same letter do not differ significantly (P < 0.05; DMRT).


EFFECT OF REFLECTIVE PLASTIC MULCH IN MANAGING PEPPER WEEVIL

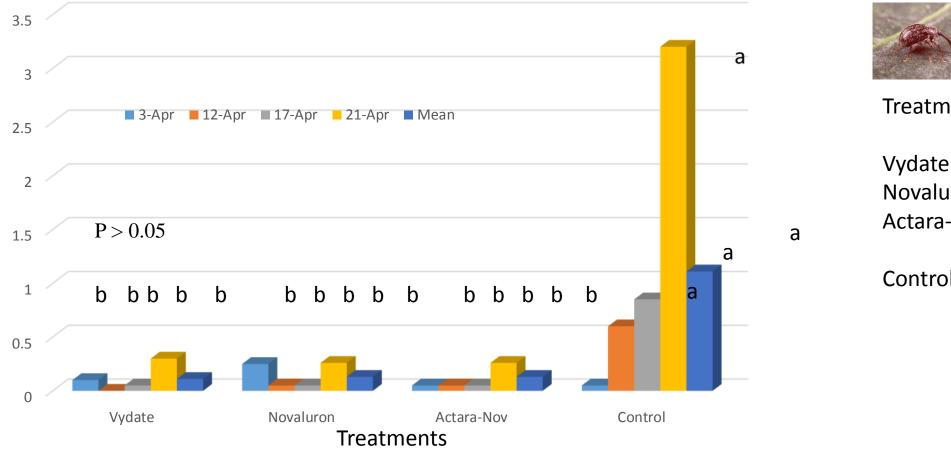
Mean numbers of pepper weevil infested fruits on different plastic mulches

Different plastic mulches


Mean numbers of marketable fruits on different plastic mulches

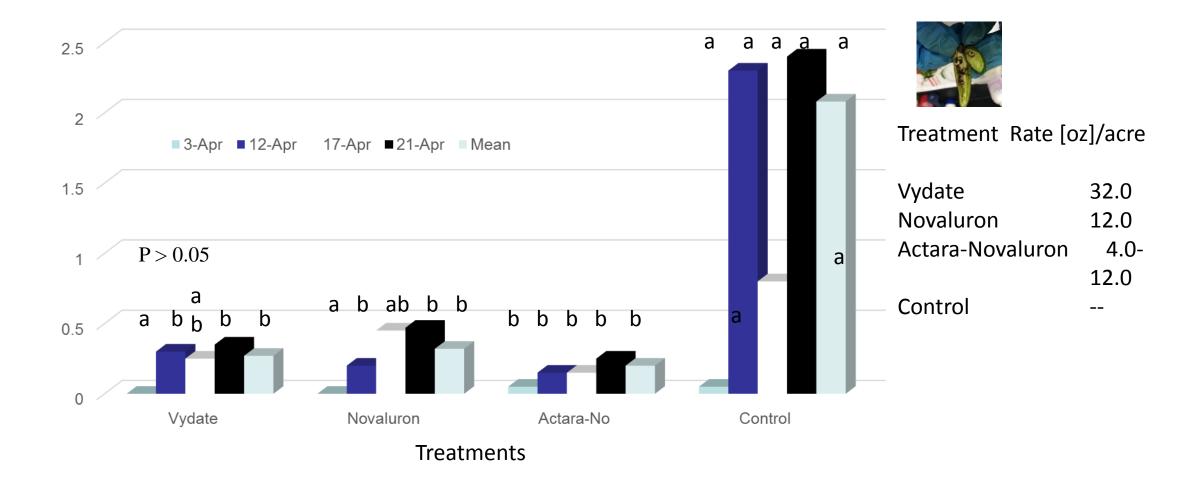

Different plastic mulches

Chemical control


Mean number of infested fruits/plot treated with Actara and Vydate

Mean weight (Lb.) of marketable yield/plot

Effect of Novaluron in controlling PW adults



Treatment Rate [oz]/acre

Vydate	32.0
Novaluron	12.0
Actara-Novaluron	4.0-
	12.0
Control	

Effect of Novaluron on PW infested fruits/plant

Conclusion

PWACT provided suppression of PW up to four weeks

PW infestation was high in the pheromone treated field

Venerate increased total marketable yield

Both Actara and Vydate significantly reduced PW infested buds, flowers and fruits. However, effectiveness of Actara was better than Vydate.

Actara in rotation with Novaluron provides significant reduction of PW and PW infested fruits.

Disclaimer

 The above information on the efficacy of insecticides in controlling thrips were generated based on our various research studies. This information should not be used as a recommendation by the University of Florida for controlling any specific pest. Use of an insecticide must be based on the label of that insecticide.

IFAS